Research & Publications

  • Authors:
    Read Abstract | Read Article

  • Two cases of monkeypox imported to the United Kingdom, September 2018

    Authors: Aisling Vaughan, Emma Aarons, John Astbury, Sooria Balasegaram, Mike Beadsworth, Charles R Beck, Meera Chand6, Catherine O’Connor, Jake Dunning, Sam Ghebrehewet, Nick Harper, Ruth Howlett-Shipley, Chikwe Ihekweazu, Michael Jacobs, Lukeki Kaindama, Parisha Katwa, Saye Khoo, Lucy Lamb, Sharon Mawdsley, Dilys Morgan, Ruth Palmer, Nick Phin, Katherine Russell, Bengü Said, Andrew Simpson, Roberto Vivancos, Michael Wade, Amanda Walsh, Jennifer Wilburn
    Read Abstract | Read Article

    In early September 2018, two cases of monkeypox were reported in the United Kingdom (UK), diagnosed on 7 September in Cornwall (South West England) and 11 September in Blackpool (North West England). The cases were epidemiologically unconnected and had recently travelled to the UK from Nigeria, where monkeypox is currently circulating. We describe the epidemiology and the public health response for the first diagnosed cases outside the African continent since 2003.

  • Meningococcus serogroup C clonal complex ST-10217 outbreak in Zamfara State, Northern Nigeria

    Authors: Brenda A. Kwambana-Adams, Rahab C. Amaza, Catherine Okoi, Murtala Rabiu, Archibald Worwui, Ebenezer Foster-Nyarko, Bernard Ebruke, Abdul K. Sesay, Madikay Senghore, Abdullahi S. Umar, Rabi Usman, Adamu Atiku, Garba Abdullahi, Yahaya Buhari, Rabiu Sani, Husaini U. Bako, Bashir Abdullahi, Alliyu I. Yarima, Badaru Sikiru, Aderinola Olaolu Moses, Michael O. Popoola, Eme Ekeng, Adebola Olayinka, Nwando Mba, Adamu Kankia, Ibrahim N. Mamadu, Ifeanyi Okudo, Mary Stephen, Olivier Ronveaux, Jason Busuttil, Jason M. Mwenda, Mohammed Abdulaziz, Sulaiman A. Gummi, Adebayo Adedeji, Andre Bita, Linda Omar, Mamoudou Harouna Djingarey, Wondimagegnehu Alemu, Umberto D’Alessandro, Chikwe Ihekweazu & Martin Antonio
    Read Abstract | Read Article

    After the successful roll out of MenAfriVac, Nigeria has experienced sequential meningitis outbreaks attributed to meningococcus serogroup C (NmC). Zamfara State in North-western Nigeria recently was at the epicentre of the largest NmC outbreak in the 21st Century with 7,140 suspected meningitis cases and 553 deaths reported between December 2016 and May 2017. The overall attack rate was 155 per 100,000 population and children 5–14 years accounted for 47% (3,369/7,140) of suspected cases. The case fatality rate (CFR) among children 5–9 years was 10%, double that reported among adults ≥ 30 years (5%). NmC and pneumococcus accounted for 94% (172/184) and 5% (9/184) of the laboratory-confirmed cases, respectively. The sequenced NmC belonged to the ST-10217 clonal complex (CC). All serotyped pneumococci were PCV10 serotypes. The emergence of NmC ST-10217 CC outbreaks threatens the public health gains made by MenAfriVac, which calls for an urgent strategic action against meningitis outbreaks.

  • Notes from the Field: Responding to an Outbreak of Monkeypox Using the One Health Approach — Nigeria, 2017–2018

    Authors: Womi-Eteng Eteng, MSc; Anna Mandra, DVM; Jeff Doty; Adesola Yinka-Ogunleye, DDS; Sola Aruna, MD; Mary G. Reynolds, PhD; Andrea M. McCollum, PhD; Whitni Davidson, MPH; Kimberly Wilkins; Muhammad Saleh, MPH; Oladipupo Ipadeola, MSc; Lamin Manneh; Uchenna Anebonam, MPH; Zainab Abdulkareem, DVM; Nma Okoli, DVM; Jeremiah Agenyi; Chioma Dan-Nwafor, MPH; Ibrahim Mahmodu, MPH; Chikwe Ihekweazu, MD
    Read Abstract | Read Article

    On September 22, 2017, a suspected human case of monkeypox was reported to the Nigeria Centre for Disease Control (NCDC) from Bayelsa State in southern Nigeria. Because monkeypox had not been reported in Nigeria since 1978 (1), the case raised national and international concern. A multisectoral, international outbreak investigation was undertaken to identify sources and risk factors, establish surveillance, and enhance preparedness. A suspected case was defined as the sudden onset of fever, followed by a vesiculopustular rash primarily on the face, palms, and soles. A confirmed case was any suspected case with laboratory confirmation (by serology, molecular detection of viral DNA, or virus isolation). A probable case was a suspected case epidemiologically linked to a confirmed case. As of February 25, 2018, a total of 228 suspected cases (including 89 confirmed and three probable cases) had been investigated in 24 of Nigeria’s 36 states and the Federal Capital Territory. Six deaths (6.7%) were recorded among the 89 confirmed cases. The outbreak has not been declared over, and NCDC continues to collect data to develop a baseline level for this disease, which had not been reported in 40 years and now might be endemic to Nigeria. Given the zoonotic nature of the disease, this outbreak has required a robust One Health outbreak collaboration among human, animal, and environmental health institutions.

  • Time delays in the response to the Neisseria meningitidis serogroup C outbreak in Nigeria – 2017

    Authors: Assad Hassan , G. U. Mustapha, Bola B. Lawal, Aliyu M. Na’uzo, Raji Ismail, Eteng Womi-Eteng Oboma, Oyeronke Oyebanji, Jeremiah Agenyi, Chima Thomas, Muhammad Shakir Balogun, Mahmood M. Dalhat, Patrick Nguku, Chikwe Ihekweazu
    Read Abstract | Read Article


    Nigeria reports high rates of mortality linked with recurring meningococcal meningitis outbreaks within the African meningitis belt. Few studies have thoroughly described the response to these outbreaks to provide strong and actionable public health messages. We describe how time delays affected the response to the 2016/2017 meningococcal meningitis outbreak in Nigeria.


    Using data from Nigeria Centre for Disease Control (NCDC), National Primary Health Care Development Agency (NPHCDA), World Health Organisation (WHO), and situation reports of rapid response teams, we calculated attack and death rates of reported suspected meningococcal meningitis cases per week in Zamfara, Sokoto and Yobe states respectively, between epidemiological week 49 in 2016 and epidemiological week 25 in 2017. We identified when alert and epidemic thresholds were crossed and determined when the outbreak was detected and notified in each state. We examined response activities to the outbreak.


    There were 12,535 suspected meningococcal meningitis cases and 877 deaths (CFR: 7.0%) in the three states. It took an average time of three weeks before the outbreaks were detected and notified to NCDC. Four weeks after receiving notification, an integrated response coordinating centre was set up by NCDC and requests for vaccines were sent to International Coordinating Group (ICG) on vaccine provision. While it took ICG one week to approve the requests, it took an average of two weeks for approximately 41% of requested vaccines to arrive. On the average, it took nine weeks from the date the epidemic threshold was crossed to commencement of reactive vaccination in the three states.


    There were delays in detection and notification of the outbreak, in coordinating response activities, in requesting for vaccines and their arrival from ICG, and in initiating reactive vaccination. Reducing these delays in future outbreaks could help decrease the morbidity and mortality linked with meningococcal meningitis outbreaks.

  • Tackling viral haemorrhagic fever in Africa

    Authors: Chikwe Ihekweazu, Ibrahim Abubakar
    Read Abstract | Read Article

    Outbreaks of viral haemorrhagic fevers, such as the Ebola virus disease epidemic in west Africa, have caught the attention of the global health community because of perceived and real threats to local, national, and global health security and their economic impact.1 Although viral haemorrhagic fever outbreaks primarily affect settings in which pathogens emerge from animal hosts, they also have the potential to spread worldwide. Consequently, models that accurately predict the emergence and spread of viruses that cause viral haemorrhagic fevers are needed. In The Lancet, David Pigott and colleagues2 use a combination of approaches to assess and understand the threat of viral haemorrhagic fevers across Africa by identifying locations that have the greatest potential for zoonotic spillover, regions that are susceptible to ongoing secondary transmission, and areas with the highest potential for local and global spread. A key strength of this study is the provision of subnational estimates of risks.

    The use of models to inform the distribution of resources to prevent or respond to outbreaks requires prospective validation. Gaps and bias in surveillance data on viral haemorrhagic fevers in human beings in most African settings3 limit the ability to correctly predict zoonotic spillover. Pigott and colleagues predicted probable zoonotic transmission from animal hosts to human beings by combining geographical information on index cases of outbreaks and viral detection in animals and related this information to drivers in the environment to generate profiles that characterise where disease is likely to be found. In the absence of unbiased prospective surveillance, using similarities between environmental profiles to predict disease spread and which areas to focus surveillance should be used with appropriate caution. Nevertheless, this comprehensive assessment justifies investment in better surveillance and further animal–host surveys.

    Projects such as the US Agency for International Development's (USAID's) PREDICT programme4provide an opportunity to improve the quality of viral reservoir data, but these data must be combined with better local disease surveillance and human–animal interaction behavioural data. By contrast, the quality of data on human connectivity, especially for air travel, is more robust and predictions of subsequent spread after emergence are therefore likely to be accurate.

    In Pigott and colleagues' study,2 countries that have the greatest potential for spillover from animals reflect the original zoonotic niche of the viral haemorrhagic fevers examined, as expected. Analysis of outbreak receptivity, which relates to susceptibility to ongoing secondary transmission, showed that 90% of districts in the Central African Republic, Chad, Somalia, and South Sudan ranked in the top 90th percentile. These countries stand out for their political instability. Strikingly, estimating epidemic potential based on local and international connectivity showed that at-risk districts in Nigeria represented many of those with the highest potential for global spread of viral haemorrhagic fevers.2

    Pigott and colleagues suggest that this work should inform investment at each stage of potential epidemic progression and propose areas in which they should be made. However, the authors did not mention where the investment will come from or which institutions should be the primary recipients.

    Sustainable action to prevent the emergence and spread of viral haemorrhagic fevers requires investment to include local sources and to strengthen national and local capacity. Science-led national public health institutes (NPHIs) are needed to use complex information to make informed decisions on preparedness and response. NPHIs can provide leadership in disease surveillance and outbreak investigations, reference laboratory services, including specialist diagnostic services for rare organisms, and advise their governments on development and evaluation of public health interventions. These institutes need scientists who are knowledgable in the local context. Many African countries already recognise the need to bring the requisite expertise together into one institute, which led to the establishment of several NPHIs.5 Equally pertinent is the need for regional cooperation and resilience, which has led to new regional bodies such as the West African Regional Centre for Surveillance and Disease Control and the Africa Centres for Disease Control. These institutes are supported with modest resources compared with similar entities in high-income countries, despite the increased risk of major outbreaks from zoonotic and human sources.

    Not enough emphasis in the post-Ebola narrative has been placed on strengthening NPHIs to fulfil their global health security mandate. Instead, too much responsibility has been placed on WHO, which, despite improvements in technical expertise on emergency response,6 does not have sufficient resources—should they be expected—to respond to all threats in a continent as vast as Africa, or the local presence to rapidly deal with emerging viral haemorrhagic fever threats. What if Guinea had a strong NPHI with the right expertise to respond to information on infectious disease risk and use this information to persuade its own government to act? An outbreak of the size and scale experienced might never have happened.

    Establishment of NPHIs provides the crucial national resources required to underpin the prevention, detection, and response to outbreaks of emerging infections. These organisations should be designed with relevant disciplines and expertise to ensure they are fit for purpose, such as technical, epidemiological, microbiological, research, and communication skills, and supported by adequate and stable financing.7 To build strong, science-based institutions takes time and effort; however, it is the only sustainable way that research can lead to the development of a robust global health response capacity to emerging infections including viral haemorrhagic fevers. Although Pigott and colleagues2 did not explore specific interventions, such as the ability to respond to outbreaks or the use of protective equipment with their model, future research using such models should investigate measures to mitigate spread.

    CI is the Chief Executive Officer of the Nigeria Centre for Disease Control and acting lead for the West Africa Regional Centre for Surveillance and Disease Control. IA and CI are investigators on the European & Developing Countries Clinical Trials Partnership-funded Pandora consortium and the UK Space Agency-funded scoping study to develop tools for predicting zoonotic infections.

  • The Nigeria Centre for Disease Control

    Authors: Ahmad Muhammad Njidda, Oyeronke Oyebanji, Joshua Obasanya, Olubunmi Ojo, Adebayo Adedeji, Nwando Mba, John Oladejo, Chikwe Ihekweazu
    Read Abstract | Read Article

    Summary box

    • Nigeria and several other African countries have been battling with public health challenges for decades. These challenges came to fore during the Ebola virus disease (EVD) crisis that affected many countries in the West African region, including Nigeria.

    • As a result, many African countries have established their National Public Health Institutes as a focal point to prevent, detect and respond to diseases of public health importance, but currently, only 9 of the 15 countries in West Africa have a designated national public health institute.

    • Before the EVD crisis, Nigeria established the Nigeria Centre for Disease Control (NCDC), which played a pivotal role in the control of the EVD outbreak in Nigeria, as well as provided support to other countries that were affected by the crisis.

    • Modelled on the US Centre for Disease Control and Prevention (CDC), the NCDC has institutionalised Nigeria’s capacity to respond to the increasing threats of outbreaks of infectious diseases and other public health emergencies. This is achieved through building collaborations and taking the lead in prevention, preparedness and surveillance, and also coordinating the public health laboratory networks.

    • African public health institutes are currently in early stages of evolution. Building a national public health institute requires strong commitment, clarity of vision. The experience of setting up the public health institute of Nigeria can inform similar efforts in other African countries.

    Only a few African countries like Ethiopia and Mozambique have long standing National Public Health Institutes (NPHI). However, since the large 2014–2016 Ebola virus disease (EVD) outbreak in West Africa, many African countries have been setting up NPHI1 2to optimise the use of scarce resources to prevent, detect and respond to infectious disease threats. The Africa Union and the Economic Community of West African States (ECOWAS) have also set up regional disease control centres.3

    The Nigeria Centre for Disease Control (NCDC) was conceived much earlier in 2007 as an attempt to establish an institution that can effectively mobilise its resources to respond to these outbreaks and other public health emergencies. Modelled after the US Centre for Disease Control and Prevention (CDC), Atlanta, the first formal step to establish NCDC took place in 2011 when units of Federal Ministry of Health—the Epidemiology Division, the Avian Influenza Project and its laboratories—and the Nigeria Field Epidemiology and Laboratory Training Program (NFELTP) were moved to form the nucleus of NCDC.

    Detecting and responding to infectious disease outbreaks has long presented a major public health challenge in Nigeria, given its size and complexity. Several large infectious disease outbreaks have been reported in Nigeria, including the yellow fever outbreak in 19864 and 19875 that affected 9800 and 1249 people, respectively, the large meningitis outbreak in 1996 with 109 580 cases and 11 717 deaths,6 cholera outbreaks in 2001 and 20047 and more recently, the meningitis outbreak in 2017.8 9 In between these was the much acclaimed successful response to the outbreak of EVD in September 2014.10

    Nigeria’s public health challenges continue to grow—rapid population growth, increasing movement of people and destruction of infrastructure in the North East of Nigeria following the ‘Boko Haram’ insurgency and outbreaks from new and re-emerging pathogens. The year 2017 saw an increase in the rate of infectious diseases like Lassa fever,11 yellow fever, monkey pox, cholera and new strains/subtypes/serotypes of existing pathogens like Neisseria meningitidis serogroup C in Nigeria.12 In addition, Nigeria has had to address emerging public health threats, such as increasing antimicrobial resistance,13 and increasing incidence of non-communicable diseases14 and high maternal mortality rates.15

    The establishment of NCDC is indeed more justifiable now than when it was conceived in 2007. The value of the NCDC to the country became most obvious from its role in the coordination of the response to the 2014 EVD outbreak in Nigeria16 17 and coordinating the support that Nigeria provided to the Governments of Sierra Leone and Liberia during the EVD outbreak in those countries. This outbreak and the need for strong, country-led coordination become the basis for further growth of the NCDC. Notably, NCDC now takes the front seat in preventing and preparing for public health emergencies, and in managing the surveillance and reference laboratory architecture for Nigeria. NCDC has strong partnerships with the WHO and the US CDC, which support various activities at the Centre through grants and technical assistance to support disease surveillance, establishment of reference laboratory systems, outbreak response activities and others.

    Together with the African Field Epidemiology Network, NCDC also manages the delivery of the Nigeria Field Epidemiology and Laboratory Training Programme (NFELTP). The NFELTP is a 2-year in-service training in applied epidemiology and laboratory practice within the NCDC/Federal Ministry of Health and Federal Ministry of Agriculture. The programme also offers basic epidemiology training to health workers at Local Government levels to improve surveillance and response to priority diseases.18The NFELTP is modelled after the US-CDC Epidemiology Intelligence Service and has been replicated in >80 countries around the world. In Nigeria, NFELTP has developed a pool of Field Epidemiologists and Laboratory experts with skills to gather critical information and turn it into public health action, and it is a major public health asset within Nigeria’s national public health institute.19

    The NCDC also has a very strong relationship with the new ECOWAS Regional Centre for Disease control which is also the regional hub for the Africa Centre for Disease Control. Other partnerships that the Centre has recently developed include with the University of Maryland, Baltimore, the Robert Koch Institute, the Global Outbreak and Response Network and Public Health England, all focusing on specific aspects of its mandate.

    The NCDC has strengthened its focus on prevention and preparedness; stockpiling and prepositioning of supplies for outbreak response in the states; development of guidelines and checklists for emergency preparedness; and generally increasing its role in supporting the States. NCDC also provides guidance and support to other professionals and sub-national government public health organisations and officials.

    One way that NCDC has been able to coordinate preparedness and response activities is the establishment of its Incident Coordination Centre. This serves as a location to review outbreak reports and decide on preparedness and response activities. Dashboards are available to display data from the subnational level, which provides a snapshot of disease trends in the country. The Incident Coordination Centre is also tasked with daily intelligence gathering and risk analysis of public health events to identify potential threats. It serves as an Emergency Operations Centre during outbreaks, with an incident manager leading the response, bringing together the various pillars of outbreak response working in a command and control structure.

    The NCDC is also the focal point for the implementation of the International Health Regulations (IHR), which is a global legal agreement that aims to prevent and respond to the spread of diseases and to avoid their becoming international crises. A Joint External Evaluation was carried out in June 2017 to assess Nigeria’s capacity to prevent, detect and respond to treats of public health importance. Several areas of strength were highlighted as well as areas requiring an improvement in capacity.20Subsequently, a National Action Plan is being developed to strengthen areas of weakness.

    The journey of NCDC shows that building NPHI takes clarity of vision, perseverance, commitment and a strong legal mandate. Achieving a legal mandate will demonstrate Nigeria’s commitment to providing a strong scientific focus for ensuring the health security of Africa’s most populous nation. Over the next 5 years, the NCDC’s mission is to work in partnership with other arms of Government and partners to protect the health of Nigerians. This will be accomplished through integrated disease surveillance; a linked and connected public health laboratory network within the country and the sub region; and the coordination of emergency preparedness and response activities.

    NPHI help to concentrate a country’s resources for the prevention, detection and response to infectious diseases in a single organisation. Nigeria’s experience of setting up its NCDC can inform similar efforts in other African countries.

  • Genomic characterisation of human monkeypox virus in Nigeria

    Authors: Ousmane Faye , Catherine B Pratt , Martin Faye , Gamou Fall , Joseph A Chitty , Moussa M Diagne , Michael R Wiley , Adesola F Yinka-Ogunleye , Sola Aruna , Ebitimitula N Etebu , Neni Aworabhi , Dimie Ogoina , Wari Numbere , Nwando Mba , Gustavo PalaciosEmail the author Gustavo Palacios , Amadou A Sall , Chikwe Ihekweazu
    Read Abstract | Read Article
    Monkeypox virus (MPXV) is a large, double-stranded DNA virus belonging to the Orthopox genus in the family Poxviridae. First identified in 1958, MPXV has caused sporadic human outbreaks in central and west Africa, with a mortality rate between 1% and 10%.1 Viral genomes from west Africa and the Congo Basin separate into two clades, the latter being more virulent.2 Recently, MPXV outbreaks have occurred in Sudan (2005), the Republic of the Congo and Democratic Republic of the Congo (2009), and the Central African Republic (2016).

  • Reemergence of Human Monkeypox in Nigeria, 2017

    Authors: Adesola Yinka-Ogunleye, Olusola Aruna, Dimie Ogoina, Neni Aworabhi, Womi Eteng, Sikiru Badaru, Amina Mohammed, Jeremiah Agenyi, E.N. Etebu, Tamuno-Wari Numbere, Adolphe Ndoreraho, Eduard Nkunzimana, Yahyah Disu, Mahmood Dalhat, Patrick Nguku, Abdulaziz Mohammed, Muhammad Saleh, Andrea M. McCollum, Kimberly Wilkins, Ousmane Faye, Amadou Sall, Christian Happi, Nwando Mba, Olubumi Ojo, and Chikwe Ihekweazu
    Read Abstract | Read Article

    In Nigeria, before 2017 the most recent case of human monkeypox had been reported in 1978. By mid-November 2017, a large outbreak caused by the West African clade resulted in 146 suspected cases and 42 laboratory-confirmed cases from 14 states. Although the source is unknown, multiple sources are suspected.

Connect Centre

  • Toll Free Number: 0800 9700 0010
  • Whatsapp: +234(0)708 711 0839
  • SMS Number: +234(0)809 955 5577